

Prioritising Nitrogen Threats and Benefits: Which issues need to be linked when developing integrated modelling capability?

Background document

050515 | Hans van Grinsven Baojing Gu, Daniel Sobota, Wilfried Winiwarter, Lex Bouwman, Luis Lassaletta and Mark Sutton

Edinburgh 05-May-15 INMSpp

The overall goal of INMSpp

- Establish a framework for the international model chain
- Develop the global capability for nitrogen integrated assessment modelling
- Focus starts from the needs of international conventions and policy makers (*link to needs of general public / voters*)
- Demonstrate how feasible improvements (scenarios) in global and regional nitrogen management would <u>translate</u> into quantified co-benefits in net economic terms
 - improved food and energy security,
 - reduced pollution
 - climate threats

HIGH AMBITION

Nitrogen Cascade

(DPSIR)

Multiple:

- Sources
- Forms
- Routes
- Impacts

Source: I&M 2011

Nitrogen cascade

www.pbl.nl

The challenge

- Prioritization is a societal/political process
- What are current N priorities, and how differ across regions?
- What support did / can science deliver?
- Consequences for INMS modelling?
- Global context more complicated than EU/ENA experience
 - Different levels of democratic / policy processes
 - Regions with no energy, food, water security
 - Limited environmental regulations (Australia, N Zealand)
 - Science community policy interface less well developed

Priority setting requires impact quantification

- A. Environmental emissions and quality
- B. Real impacts in their proper units: e.g. incidence COPD and cancers, biodiversity, forest vitality, habitat quality, HAB incidence etc.

Link A&B: causality, dose response relationships, critical loads and levels

- C. Policy objectives, targets: distance to target
- D. Impacts in same units and relevant for society: lost (healthy) life years, ecosysystem services, welfare loss in monetary units

INMS, how far we need to go beyond ENA/WAGES?

- Differentiate between local, regional and global issues
- Differentiate between issues that create local discomfort and issues that create system disruption
 - morbidity or mortality to humans versus issues that threaten the functions of the wider agro-food, energy, and environmental systems as a whole
- Translate N issues to food and energy security
- Include aspects of fairness: sharing costs and benefits of N
 - Between regions
 - Between players in the supply chain: weak position farmers

Sustainable agro-food systems and linkage to N

Nitrogen, food security, environment and welfare

"is nitrogen fertilizers feeding half of the world's population"? (Smil, 2002)"

Social and economic barriers to change

Smart mitigation has to consider priorities and barriers o change e.g.:

- Economic development stage
- Global and regional issues of trade
- Political system
- Organization structure
- Cultural norms
- Institutional assurance
- Conflicts
- Political will

Where can we use N cost–benefit assessments?

CBA is a "trick" to weigh and add up Nr emissions

- Weights based on WTP people's preference: in ideal world/survey WTP reflects popular vote - policies
- In policy analysis CBA complementary tool to other weighting approaches like "Distance To Policy Target"
- > Examples for EU, China and USA
- Controversy about added value of weighing threats to human health, ecosystem health, climate and benefits for food and energy security in one?

Weight = unit price: N-Cost = Price x Emission

	Health	Ecosystem	Climate	Total
	euro/kg N _r	euro/kg N _r	euro/kg Nr	euro/kg N _r
NO _x -N to air	10-30	2-10	-9 - 2	3-42
NH ₃ -N to air	2-20	2-10	-3 - 0	1-30
N _r to water	0-4	5-20		5-24
N₂O-N to air	1-3		4-17	5-20

	Emission EU27	
Year 2008	Mton (Tg)	
NO _x -N to air	3.2	
NH ₃ -N to air	3.1	
N _r to water	4.6	
N ₂ O-N to air	0.8	

050515 | Hans van Grinsven INMSpp BG priorities

X

Costs and benefits of N for EU27 - 2008

Total sources

N pollution cost:

75-485 billion euro/yr150-1150 euro/capita1-4% GDP loss

Large uncertainties

50 - 70%air pollution35 - 55%human health60 - 100%ecosystems-50 - 20%climate change

Societal cost NO_{X} , NH_{3} , N_{water} comparable – similar priority

Importance of N₂O in research and policy overrated

- N₂O contributes: 5% to total reactive N loss; 8% to totaal GHG emissions; 3% of total N-cost in (EU27; 2008).
- No major improvement of N₂O budgets and emission factors
 In spite of >100,000 articles sinds 2000
- In land animal based agriculture, emission of N₂O (and CH₄) are "natural" process emissions
 - In contrast to industrial emissions
- Limited potential to reduce agricultural emission of N₂O given
 - current live stock dominated structure of agriculture
 - current western diets rich animal protein

For discussion

- Common criteria for what is a "priority nitrogen issue"
 - Can we make provisional but reproducable rankings per region
 - Can we, in advance, omit issues (plastics?)
- Do we need to deal with / how do we deal with
 - Linkage to food and energy security
 - Fairness criteria (farm income!)
- Monetization of N threats useful feasible for other regions
 - WTP data carce & outdated no data outside EU, US?
 - WTP data for ecosystems scarce
- Apply welfare optimization as a goal for N scenarios?
- How do take into account barriers to change in INMS scenarios

So far so good